The University of Texas at Tyler
Master of Science in Computer Science

Course Syllabus

<table>
<thead>
<tr>
<th>Course Number:</th>
<th>COSC 5345</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Title:</td>
<td>Computer Graphics</td>
</tr>
</tbody>
</table>

Course Description:
An introduction to computer graphics stressing interactive graphics. Basic theory and applications will be covered. Open GL graphics and concepts in 3-D graphics will be given.

Pre-requisites:

Credits:

Languages Used:
C with Open GL graphics package

Topics:

1) Introduction 3 hours
2) Hardware for Graphics Systems 3 hours
3) 2-D Transformations, Window, Viewport, Clipping 15 hours
4) OpenGL Graphics Package and graphics programming techniques. 6 hours
5) 3-D Transformations, Projection equations, representation of 3-D shapes 12 hours
6) 3-D Surfaces-Polygon Mesh, Parametric Cubic Patches Interactive Graphics 3 hours

Evaluation Method: (only items in dark print apply)

1. Examination/Quiz
2. Homework
3. Paper/Report
4. Computer Program
5. Project
6. Presentation
7. Class Participation
8. Peer Review
9.
10.

Additional Materials:
Course Objectives

By the end of this course students are expected to:

1. Explain the difference between vector graphics and raster graphics [1,7]
2. Explain mapping of two-dimensional objects from the window to viewport [1,7]
3. Analyze and demonstrate two-dimensional transformations such as translation, scaling, shear, reflection, and rotation[1,7,4]
4. Explain with mathematical equations how three dimensional objects in the world coordinate system are mapped to a two dimensional viewport [1, 7].
5. Analyze transformations such as translation, rotation, scaling, reflection, and shear for three dimensional objects with homogeneous coordinate system [1, 4, 7].
6. Explain the concept of viewing pyramid and projection methods such as perspective projection and parallel projection [1, 4, 7].
7. Build a software system to map wire objects in the world coordinate system to the viewport to produce view of objects from multiple viewpoints [4].
8. Explain methods for representing surfaces such polygon meshes and parametric cubic patches [1, 7].

Numbers in bracket refer to method(s) used to evaluate the course objective.

Relationship to Program Outcomes

This course supports the following computer science graduate program outcomes, which state that our students at the time of graduation are expected to:

1. possess an enhanced breadth of knowledge in computer science, combined with a depth of knowledge in critical core areas of computing; [2,3,4,5,8]
2. possess the skills and knowledge for lifelong learning in computer science;
3. possess knowledge of the theoretical foundations of computing and have strong practical application experience;[2,3,4,5,7]
4. posses and demonstrate oral and written communication skills;
5. understand and respect the professional standards of ethics expected of a computer scientist and be knowledgeable concerning the history of computing field;
6. possess a knowledge of computer security and computer security management;
7. analyze and compare relative merits of alternative software design, algorithmic approaches, and computer system organization, with respect to a variety of criteria relevant to the task (e. g. efficiency, scalability, security); [7] and
8. implement algorithms in multiple programming languages, on multiple hardware platforms, and multiple operating system environments.

Numbers in brackets refer to course objective(s) that address the Program Outcome.

Prepared By: Arun Kulkarni
Date: 07/02/2009

Reviewed By:
Date: